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ASD affects approximately 2.3% of children in the United 
States1. ASD is highly heritable2, with most genetic risk stem-
ming from common variants, each of small effect, acting addi-

tively across the genome3. However, in at least 10% of ASD cases, rare 
and de novo variants confer substantial risk, and exome sequencing 
has enabled rare coding variant studies across ASD and many related 
developmental and neuropsychiatric disorders4–7. These studies have 
focused on single nucleotide variants (SNVs) and insertions/dele-
tions (indels) that arise de novo, although modest overtransmission 

to ASD probands has been observed for some classes of rare inherited 
variants4,8,9. The relative contribution of de novo PTVs to risk varies 
significantly by ascertainment strategy: burden is greatest in cohorts 
ascertained for individuals with DD, intellectual disability (ID) or 
multisystem congenital anomalies; moderate in individuals with ASD 
or isolated developmental anomalies and lowest in schizophrenia 
and other neuropsychiatric disorders4,5,7,10,11. Hundreds of risk genes 
have been discovered across these disorders, with associations driven 
largely by phenotypic severity and cohort size12,13.
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Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. 
We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense vari-
ants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false 
discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 
21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained 
for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), 
some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched 
in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more 
enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric 
disorders may share common pathways to risk.
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Early microarray studies established that individuals with ASD 
also harbor an excess of very large CNVs14–19. These studies iden-
tified many recurrent genomic disorder (GD) loci, or recurrent 
CNVs associated with syndromic features, most of which arose 
due to mispairing of long homologous segments—a mechanism 
known as nonallelic homologous recombination (NAHR)14,16,20,21. 
Due to their high mutation rate, NAHR-mediated GDs are among 
the best characterized genetic risk factors across all neurodevel-
opmental disorders (NDDs)6,16,21,22. Beyond these large segments, 
defining the contribution of small CNVs localized to individual 
genes in ASD across large cohorts has been a technical challenge. 
With advancing technologies, structural variant (SV) discovery is 
now tractable from whole-genome sequencing (WGS) and has been 
applied to population resources23–25, but only to relatively small ASD 
cohorts26–30. These studies, as well as long-read WGS on a small 
number of individuals31,32, have shown the mutational diversity of 
SVs that exist in all genomes, greater than 99% of which were not 
detectable by previous microarray studies32,33. We demonstrate here 
that refined models of exome-based CNV discovery can capture 
small, rare, coding CNVs with a sensitivity and specificity that is 
comparable to indel discovery and amenable to large-scale associa-
tion studies. We reasoned that joint analyses of rare coding SNVs, 
indels and CNVs at the resolution of individual genes and exons 
in large cohorts would provide a more complete picture of allelic 
diversity and mutational mechanisms that impact specific genes 
contributing to ASD.

Discovery of risk genes can also be enhanced through the inte-
gration of functional effects of rare variation and metrics to quan-
tify negative selection4. One such measure is the ‘loss-of-function 
observed/expected upper bound fraction’ (LOEUF) score34, which 
is a continuous measure of selective pressure against PTVs in each 
gene. Similarly, the ‘missense badness, PolyPhen-2, and constraint’ 
(MPC) score35 is a measure of the estimated deleteriousness of mis-
sense variation. In this study, we use a Bayesian statistical frame-
work, the transmission and de novo association (TADA) model36, 
to incorporate these functional annotations into joint analyses of 
coding SNVs, indels and CNVs across the largest exome-sequenced 
ASD and DD cohorts at the time of analysis, comprising 63,237 
individuals from ASD cohorts (20,627 ASD-affected individuals) 
and 91,605 samples from DD cohorts (31,058 DD-affected individ-
uals). We identify hundreds of genes associated with these disorders 
and reveal significant overlap, as well as substantial heterogeneity, 
in the genes associated with each phenotype and in the neural cell 
types expressing them. Overall, these analyses provide new insights 
into the contributions of rare coding variation in NDDs, including 
broad overlap and nuanced distinctions of genetic risk and its influ-
ence on specific pathways and developmental trajectories.

Results
Patterns of rare coding variants in ASD. We aggregated exome 
sequencing data across 33 ASD cohorts that included 63,237 indi-
viduals: 15,036 affected probands, 28,522 parents and 5,492 unaf-
fected siblings from family data, as well as 5,591 affected and 8,597 
unaffected individuals from case-control studies (Fig. 1a and 
Supplementary Tables 1–4). Of the family data, 58.7% had not been 
published previously. After filtering, variant counts were compa-
rable across cohorts, with an average of 1.64 (1.66 per affected, 1.57 
per unaffected) de novo SNVs and 0.18 (0.18 per affected, 0.16 per 
unaffected) de novo indels per individual. Consistent with previ-
ous studies, PTVs and damaging missense variants were enriched 
in individuals with ASD compared with unaffected individuals  
(Fig. 1b,c). PTV enrichment was greatest in genes under selective 
constraint, represented by low LOEUF scores34 (Supplementary 
Tables 5–8), with both de novo and inherited PTVs enriched in the 
lowest three deciles of LOEUF (binomial test; Fig. 1b). We anno-
tated two groups of deleterious missense variants: MisB (MPC ≥ 2) 

and MisA (2 > MPC ≥ 1); MisB variants were strongly enriched in 
ASD cases while the effect of MisA variants was modest (Fig. 1c). 
Overall, we observed the greatest ASD risk in de novo variation, 
with less significant risk observed in rare case-control (for which 
de novo status cannot be determined) and inherited variants.

Discovery of rare and de novo CNVs from exome sequencing. 
Microarray-based studies have established a clear etiological role 
for large, rare CNVs in ASD14,16–18,37–40. Here, we applied a CNV dis-
covery tool, GATK-gCNV, that predicts read-depth changes from 
short-read sequencing41. We performed extensive benchmarking 
using orthogonal technologies across 7,035 individuals with match-
ing CNVs detected from WGS26,42. These analyses observed 86% 
sensitivity and a positive predictive value (PPV) of 90% to detect 
rare (site frequency <1%) CNVs discoverable by WGS at a reso-
lution greater than two captured exons (Fig. 1d), and comparable 
sensitivity (83%) and PPV (97%) for de novo CNVs (Supplementary 
Figs. 1 and 2). Using these site frequency and resolution filters, we 
analyzed CNVs in 55,678 samples with accessible data (Methods; 
Supplementary Table 4). We observed 17,774 rare inherited and 
662 de novo autosomal CNVs after filtering; 3.95% of ASD cases 
and 1.39% of unaffected siblings harbored at least one de novo 
coding CNV (odds ratio (OR): 2.91, P = 2.2 × 10−21, Fisher’s exact 
test; Fig. 1e,f and Supplementary Table 9). A greater proportion 
of female cases harbored de novo CNVs than males (6.0% versus 
3.5%, OR: 1.8, P = 2.1 × 10−8, Fisher’s exact test), consistent with a 
female protective effect that proposes a higher burden of risk fac-
tors required for an ASD diagnosis in females17,43. De novo deletions 
spanning at least one constrained gene (LOEUF <0.4) showed the 
greatest enrichment in ASD cases across all variant classes (9.33 fold 
enrichment, P = 6.7 × 10−21, binomial test), with a relative difference 
approximately threefold higher than de novo PTVs in the same con-
straint decile (P = 2.3 × 10−4, permutation test). Duplications showed 
similar but more attenuated enrichment patterns (Fig. 1e–f).

We next sought to dissect the relative impact of large GD seg-
ment CNVs (Fig. 2a) from alterations to individual genes. We 
considered 79 GD segments previously associated with NDDs, as 
described in Collins et al.22. (Supplementary Table 10). Of the 662 
de novo CNVs discovered, 253 (38.2%) matched one of these loci 
(Methods). As expected, de novo GDs were strongly enriched in 
ASD cases (deletion OR: 4.8, P = 2.6 × 10−8, duplication OR: 2.9, 
P = 3.6 × 10−5, Fisher’s exact test, Fig. 2b), whereas a weak trend was 
detected for inherited GDs (OR: 1.2, P = 0.053, Fisher’s exact test). 
After excluding GD segments, the remaining 409 de novo CNVs 
were enriched in ASD probands, but with more modest effect sizes 
(non-GD deletion OR: 3.1, P = 1.1 × 10−9; non-GD duplication OR: 
2.1, P = 5.4 × 10−4, Fisher’s exact test). However, the impact of a 
non-GD de novo deletion of a constrained gene was comparable to 
a GD deletion (OR: 6.9, P = 2.2 × 10−12, Fisher’s exact test, Fig. 2c) 
and significantly greater than de novo PTVs in constrained genes 
(OR: 2.74, P = 3.7 × 10−34, Fisher’s exact test, Fig. 2c).

We also quantified risk associated with GDs in ASD compared 
with the general population by applying GATK-gCNV to exome 
data in the UK Biobank (UKBB)44. We processed the UKBB data 
using identical parameters as the ASD cohort and compared carrier 
rates for 79 GD loci in 13,786 ASD cases and 145,532 UKBB con-
trols with accessible phenotype information and no documented 
neuropsychiatric or developmental phenotypes. These analyses 
demonstrated a linear inverse correlation of decreasing OR in ASD 
with increasing GD frequency in the UKBB, with the most signifi-
cant loci including established GDs such as 15q11.2-q13.1, 17q12 
and 17q11.2, among others (OR > 50; Fig. 2d). We provide these 
results in Supplementary Fig. 3 and Supplementary Table 10 as a 
reference for future GD variant interpretation.

Finally, de novo SNVs and indels arise more frequently on 
the paternal allele38,45,46, yet a maternal bias has been observed for 
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de novo CNVs in ASD47. We explored the mechanisms associated 
with this bias using SNV/indel data to estimate the parent of origin 
for 225 de novo CNVs and observed no bias in ASD cases (Fig. 2e; 
49% maternal, P = 0.89, binomial test; Methods). However, 69% of 
de novo CNVs at NAHR-mediated GD loci arose preferentially on 
the maternal allele (P = 3.7 × 10−4, binomial test) and recapitulated 
previous findings, with the strongest bias observed for the 16p11.2 
CNV across this cohort and the Simons Searchlight project47,48 
(95% maternal origin; Fig. 2e). By contrast, CNVs that were not 
NAHR-mediated GDs showed a significant paternal bias (63.5%; 
P = 2.0 × 10−3, binomial test), suggesting a mechanistic maternal 
bias in NAHR-mediated CNV formation, but a paternal bias in 
all other classes of de novo SVs, consistent with previous analyses 
using WGS42.

Integration of variant classes for ASD gene discovery. The relative 
risk of variants associated with ASD varied by mode of inheritance, 
variant class (PTV, MisB, MisA, deletion and duplication) and evolu-
tionary constraint. We thus sought to leverage these insights to refine 
ASD gene discovery by extending a Bayesian analytic framework,  

TADA4,36, to include (1) rare and de novo CNVs, (2) variants 
present in unaffected offspring and (3) evolutionary constraint 
from gnomAD (LOEUF34, Methods; Supplementary Table 8 and 
Supplementary Fig. 4). For each autosomal protein-coding gene, 
a Bayes factor (BF) was calculated to represent evidence of asso-
ciation across variant types and modes of inheritance, taking into 
account mutation rates and relative risk priors (Fig. 3a).

Applying this model to the aggregated ASD data (TADA-ASD), 
we identified 72 genes associated with ASD at FDR ≤ 0.001 (Fig. 3b) 
and 185 genes at FDR ≤ 0.05 (Supplementary Table 11). Within the 
72 genes, de novo PTV, MisB or MisA variants were detected in 4.0% 
of cases and 0.5% of controls (combined OR: 8.44, P = 3.4 × 10−51, 
Fisher’s exact test), and we applied cross-validation to refine vari-
ant class-specific risk (Supplementary Note and Supplementary  
Table 12). Notably, the FDR ≤ 0.001 used here is approximately 
equivalent to an exome-wide Bonferroni significance threshold 
(P < 2.8 × 10−6) when back-calculating a P value and correcting for 
18,128 autosomal genes, making it comparable with recent studies of 
schizophrenia7 and DD5. We calibrated the relative impact of the inclu-
sion of multiple variant classes and our updated model parameters  
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Fig. 1 | Overview of SNV/indel and CNV rates in ASD by mode of inheritance and constraint. a, The ASD cohort consisted of 49,049 family-based samples 
(15,036 cases) and 14,188 case-control samples (5,591 cases). One sample was a proband in one trio and a mother in another. b, The relative difference 
in PTV frequency between cases and unaffected controls (top) and average per sample variant count in unaffected controls (bottom) across inheritance 
classes (color) and LOEUF deciles (5,446 genes in top three deciles of LOEUF). Using a binomial test, cases were enriched for PTVs among the most 
constrained genes (lower LOEUF deciles), which weakened as negative selection against PTVs was relaxed (higher LOEUF deciles). c, Equivalent analyses 
were performed for missense variants annotated by MPC score and synonymous variants. Synonymous variants were not enriched in cases or controls, as 
evaluated via binomial tests. d, Benchmarking of the GATK-gCNV exome CNV discovery pipeline compared against WGS on overlapping samples achieved 
a sensitivity of 86% and PPV of 90% for rare CNVs (<1% site frequency) that spanned more than two captured exons (red line). e, The relative difference 
in variant frequency between cases and controls for deletions. Using binomial tests, we found that the enrichment of deletions (Del.) overlapping genes in 
the lowest LOEUF decile were stronger than PTVs in the same LOEUF deciles. f, Equivalent analysis for duplications (Dup.) demonstrated a similar pattern 
of enrichment compared with deletions but with more subtle relative differences. Statistical tests in b, c, e and f were two-sided binomial tests with 95% 
confidence interval error bars shown, P values (not corrected for multiple tests) and sample sizes are given in Supplementary Table 22.
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haploinsufficiency was the predominant mechanism; PTVs and 
deletions accounted for greater than 90% of the evidence in 21 of 72 
ASD risk genes (29.2%). However, for nine genes (12.5%), greater 

here compared with previous ASD studies on a subset of these 
samples (Fig. 3c and Supplementary Fig. 5). While we observed 
considerable mutational diversity across ASD risk genes (Fig. 3d,e),  
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(Fisher’s exact test) and the effect size was greater than that observed in de novo PTVs or de novo missense variants (logistic regression). c, ORs for 
de novo GD CNVs in probands compared with unaffected siblings, a subset of which have no observed de novo CNVs in unaffected individuals in this 
cohort (for example, 16p11.2 deletions, 15q11.2-q13 duplications). d, Analysis of all GDs (de novo and inherited) in ASD cases compared with GDs in a 
population-based cohort (UKBB) discovered using GATK-gCNV with identical parameters, with LOESS-smoothed bands of the 95% confidence interval 
of the OR in gray. e, Parent-of-origin analysis of de novo CNVs using binomial tests showed maternal bias for NAHR-mediated CNVs at GD regions, 
which was most pronounced for the 16p11.2 GD as previously described47. Statistical tests in b and c were Fisher’s exact test with 95% confidence interval 
plotted as error bars, P values (not corrected for multiple tests) and sample sizes are located in Supplementary Table 22; statistical tests in d were Fisher’s 
exact test of carrier status in 13,786 unique ASD cases and 143,532 unique UK biobank controls, P values (not corrected for multiple tests) are located 
in Supplementary Table 10; statistical tests in e were binomial test with 95% confidence interval plotted as error bars, sample sizes and P values (not 
corrected for multiple tests) are located in Supplementary Table 22.
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both severity and sex are associated with being a carrier of such 
mutations. Using dichotomized full-scale IQ (FSIQ, 2,095 samples) 
and autism diagnostic observational scale (ADOS, 5,280 samples) 
test scores as proxies of phenotypic severity, we constructed logis-
tic regressions to estimate the OR of carrying a de novo damaging 
variant (PTV, MisB, GD CNV or CNV overlapping one of the 185 
ASD genes) as a function of sex and phenotype. We found that ASD 
individuals harboring these damaging mutations are significantly 
more likely to be female and to be severely affected, and that sex and 
severity status combined additively to determine burden. There was 
no evidence of an interaction effect, which would be expected with 
ascertainment bias (Methods; Supplementary Table 13a–d). Thus, 
these analyses strongly favor the female protective effect.

Comparing the genetic architectures of ASD and general DD. 
Significant overlap has been observed between genes affecting 
ASD and those affecting development more broadly, including 
NDDs51,52. To explore commonalities and differences across genes 
that impact NDD risk, we sought to integrate data from our ASD 
cohort with an independent cohort of 31,058 offspring ascertained 

than 90% of evidence was derived from missense variants and 
duplications (for example, DEAF1 and SLC6A1; Fig. 4a), including 
one gene (PLXNA1) where overtransmission of missense variants 
was observed specifically within the Plexin domain of the encoded 
protein (Fig. 4b,c).

Although this framework is not intended to assess autosomal 
recessive risk in ASD, we examined offspring with two (or more) 
PTV and/or MisB alleles within the same gene, whether from homo-
zygous or compound heterozygous variants. We found ten genes 
with two or more occurrences in ASD cases (B3GALT6, BTN2A2, 
DNAAF3, EIF3I, FEV, KCP, RDH11, RNF39, RNF175 and SSPO) 
and no such occurrence in unaffected siblings. Some genes, such as 
FEV, have been implicated in recessive models of ASD49, whereas 
most other genes have not been associated with an autosomal reces-
sive form of ASD and warrant further study.

Lastly, we evaluated two hypotheses regarding the excess burden 
of de novo variants in females across the 185 FDR ≤ 0.05 genes and 
the GD loci: (1) the excess is due to a female protective effect; or 
(2) it arises from an ascertainment bias by which females diagnosed 
with ASD tend to be affected more severely than males50. In fact, 
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Because a cardinal rule of meta-analysis is that the data should 
not be too heterogeneous, before combining results across cohorts, 
we assessed whether the genes identified in the ASD cohort were 
also associated in the DD cohort, and vice versa. To do so, we 
converted the distribution of TADA FDRs to P values for each 
study (Methods). If the genes associated in one cohort were also 
associated in the other, or some fraction thereof, the distribution 
of their association P values would be skewed toward zero. When 
we selected the 477 genes associated in the DD cohort from the 
TADA-DD analysis at FDR ≤ 0.05, the estimated fraction of ASD 
genes also showing association was 0.701 (Methods; Fig. 5c), indi-
cating that 70.1% of these DD genes affect risk for ASD. The con-
verse conditioning estimated that 86.6% of ASD risk genes have 
broad effects on development (Fig. 5c,d). Thus, because the ASD 
and DD cohorts are somewhat complementary, we conducted a 
joint analysis using the TADA framework to integrate the genetic 

for broadly defined DD and their parents5. De novo SNVs and 
indels from this cohort were analyzed recently using DeNovoWEST, 
a permutation-based frequentist method, which reported associa-
tion for 252 autosomal genes5. We reanalyzed these data using our 
TADA framework to enable direct comparisons between cohorts 
using uniform statistical models and significance thresholds. This 
implementation identified 309 autosomal genes associated at 
FDR ≤ 0.001 (TADA-DD), including 237 (94%) of the 252 autosomal 
genes discovered previously5 (Supplementary Table 11). Moreover, 
our FDR values were highly correlated with those derived from 
the DeNovoWEST significance values5 (r = 0.95, P < 1.0 × 10−22; 
Supplementary Fig. 6). As expected, given the enrichment of 
cases with severe and syndromic disorders in the DD cohort5, the 
de novo PTV, MisB and MisA counts in offspring showed similar 
but much stronger variant enrichment across the top three deciles of  
LOEUF (Fig. 5a,b).
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P = 6.4 × 10−17, Fisher’s exact test). We also used this set of genes to 
assess support for an oligogenic model of ASD and DD, finding no 
support for the hypothesis (Methods; Supplementary Tables 14a–c).

Heterogeneity of mutation patterns between ASD/DD risk genes. 
Isolating genes that exert a greater effect on ASD than they do on 
other DDs has remained challenging due to the frequent comorbid-
ity of these phenotypes. Still, an estimated 13.4% of the TADA-ASD 
genes show little evidence for association in the DD cohort (Fig. 5d). 
The remainder are likely pleiotropic, yet some could have a greater 

evidence for each gene across the cohorts by combining the BFs, 
conceptually similar to a frequentist meta-analysis. This combined 
analysis (TADA-NDD) revealed 373 genes associated with general 
NDDs at FDR ≤ 0.001 (664 genes at FDR ≤ 0.05; Supplementary 
Table 11). Notably, 54 of the 373 genes did not achieve FDR ≤ 0.001 
in either cohort alone, demonstrating a 14% increase in yield. 
Although we did not have access to CNV data from the DD cohort, 
we nonetheless found a profound and specific enrichment of 134 
de novo CNVs that impacted one of the 373 TADA-NDD genes 
across all ASD cases and only one such CNV in siblings (OR: 48.9, 
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enrichment in excitatory neuron lineages, with a difference in 
log-odds values (comparing enrichment in the main clade of 
excitatory neurons to progenitors) of 1.29 for ASD and 0.7 for DD 
(one-sided P = 0.017 for ASD; P = 0.031 for DD).

The DD-predominant expressed genes tend to occur in cell 
types that are less differentiated than the corresponding cell type 
enriched for ASD-predominant genes: ExN3, ExM2, IP, InCGE 
(for details, see Supplementary Table 18 and Supplementary Note). 
By contrast, ASD-predominant expressed genes (Supplementary 
Table 19) are strongly enriched in only one cell type, maturing 
excitatory neurons (ExMU1) and its clade. These genes highlight 
a shift from mainly migration-focused genes to more mature pro-
cesses involved in building the neurons’ nascent connectivity. If we 
judge enrichment solely by significance after Bonferroni correction 
for 21 cell types, ExMU1 remained significant for enrichment of 
ASD-predominant genes; likewise, ExN3 remained significant for 
enrichment of DD-predominant genes. Our results are consistent 
with DD-predominant genes being expressed earlier in develop-
ment and in less differentiated cells than ASD-predominant genes.

Emergence of shared risk genes in schizophrenia and ASD. 
Shared genetic risk between ASD and schizophrenia, as well as 
other neuropsychiatric disorders, has long been postulated54. The 
Schizophrenia Exome Meta-Analysis (SCHEMA) Consortium 
recently identified 244 genes associated with schizophrenia at 
P < 0.01 (ref. 7), 234 of which are in our TADA model. Among 
the 72 ASD genes we discovered at FDR ≤ 0.001, 61 were associ-
ated with DD (using TADA-DD FDR ≤ 0.001), and 8 were associ-
ated with schizophrenia at P < 0.01. These two groups of 61 ASD/
DD genes and 8 ASD/schizophrenia genes overlap each other less 
than expected (P = 0.023, binomial test; Methods; Supplementary 
Fig. 11a). Similarly, using the gene sets shown in Fig. 5f, 6 of the 
36 ASD-predominant genes (ANK2, ASH1L, BRSK2, CGREF1, 
DSCAM and NRXN1) are schizophrenia-associated, while only 3 of 
the 82 DD-predominant genes (ATP2B1, GRIN2A and HIST1H1E) 
are schizophrenia-associated. The ASD-schizophrenia overlap 
was significantly enriched (P = 8.4 × 10−6, binomial test), while 
the DD-schizophrenia overlap was not (P = 0.10, binomial test; 
Methods; Supplementary Fig. 11b). The two outcomes (6/36 versus 
3/82) were also different when compared with each other (P = 0.023, 
Fisher’s exact test). Together, these data suggest that one subset  
of ASD risk genes may overlap DD while a different subset  
overlaps schizophrenia.

Discussion
Integrating rare protein-coding SNVs, indels and CNVs across 
63,237 individuals from ASD cohorts reveals an allelic spectrum 
of rare coding variation associated with ASD that is dominated by 
de novo PTVs, damaging missense variants and deletions of con-
strained genes. Nonetheless, many genes were associated with mul-
tiple inheritance or variant classes and some showed the strongest 
evidence from de novo missense variants and duplications. While 
discovery is currently driven by de novo variants imparting loss of 
function, larger ASD cohorts will likely catalyze future discover-
ies from the subtler and more heterogeneous functional effects of 
missense variants and intragenic or individual exon duplications. 
Independently applying the same statistical model to both the DD 
and ASD datasets reinforces that our analytic framework and sta-
tistical thresholds are robust, as our results for DD are highly cor-
related with the permutation-based approach applied to those same 
data5. Integrating the two cohorts together yielded 373 genes at 
FDR ≤ 0.001, including 54 genes that were unique to the joint analy-
ses and were not captured by either dataset alone, and 664 likely risk 
genes at FDR ≤ 0.05.

This study, at the time of analysis, is also the largest exploration 
so far of CNVs at the resolution of individual genes and exons to 

impact on ASD risk than other features of development. To evaluate 
heterogeneity between the ASD and DD cohorts, we retained only 
de novo SNVs/indels for independent gene-level BF calculations. For 
the 373 genes at TADA-NDD FDR ≤ 0.001, we observed a Pearson’s 
correlation of 0.78 of the gene-level log BF between the two main 
ASD subcohorts (the Simons Powering Autism Research (SPARK) 
initiative versus all others) compared with 0.42 between the ASD 
and DD cohorts, reflecting more consistent evidence between ASD 
cohorts than between ASD and DD cohorts (Supplementary Fig. 7).

We next determined which genes were more commonly 
mutated in one cohort or the other by selecting 464 ‘signal genes’ 
(Supplementary Table 15). These genes were defined as any gene 
with FDR ≤ 0.05 in either TADA-ASD or TADA-DD from de novo 
PTVs and MisB variants, which as classes confer similar relative risk 
for ASD (Fig. 1b,c); MisA variants were excluded because they con-
ferred far less risk (Fig. 1b,c). Of these signal genes, 120 belonged to 
TADA-ASD, 428 to TADA-DD and 84 to both. Notably, the 84 genes 
significant in both cohorts still demonstrated significant variant 
count heterogeneity (χ2 = 317.6, d.f. = 83, P = 3.8 × 10−23) between 
the cohorts. A common way to assess which of the 464 genes have 
more variation in either cohort would be a standardized C statistic 
(Methods), but its power to discriminate is abrogated by the much 
higher burden of risk variants in the DD cohort (Fig. 5a,b). We 
therefore adjusted for the difference in mutational burden between 
the cohorts by randomly downsampling the DD mutations to be 
comparable to that for ASD mutations. A mixture model was then 
adopted to disentangle the two commingled distributions, assign-
ing posterior probabilities that a gene is from the ASD or DD com-
ponent of the statistical distribution (Fig. 5e,f and Supplementary 
Table 15). Using a posterior probability cutoff of greater than 
0.99, we find 36 genes to be a part of the ASD mixture component 
(ASD-predominant) and 82 genes to be a part of the DD component 
(DD-predominant) (Fig. 5f and Supplementary Table 15).

Differential neuronal layers impacted by ASD/DD risk genes. To 
explore differences in expression between genes identified across 
ASD and DD cohorts, we examined single-cell gene expression 
patterns from human fetal brains. Two studies provided data from 
more than 37,000 cortical cells ranging from 6 to 27 weeks post-
conception53,54 (Supplementary Table 16). To combine these data-
sets, we adjusted for batch effects using cFIT55. Uniform manifold 
approximation and projection (UMAP) plots showed that similar 
cell types from the different batches grouped together, while cells 
unique to either batch were preserved (Fig. 6a and Supplementary 
Fig. 8). We applied unsupervised clustering to the combined data to 
identify cell subtypes in the context of a hierarchical tree to illustrate 
the relationships between major and minor cell type clusters. Using 
the MRtree method56, we observed that cells of each labeled type 
were merged across datasets into common clusters. Visualizing the 
tree, the main branches corresponded to glial and progenitor cells, 
excitatory neurons, deep layer enriched excitatory neurons and 
inhibitory neurons (Supplementary Table 17). Likewise, minor splits 
reflected expected relationships between cell types (Supplementary 
Fig. 9a). Based on the trajectory analysis of Polioudakis et al.57, the 
ExN clade is less differentiated than the ExM clade, which in turn is 
less differentiated than the ExMU clade.

Next, we assessed the enrichment of ASD and DD risk genes 
meeting the posterior probability 0.99 threshold within cell clus-
ters (Fig. 5f). Among the 36 genes classified as ASD-predominant, 
22 were expressed in these cell types; of the 82 genes classified as 
DD-predominant, 59 were expressed. Using ORs to reflect the 
strength of signal, both ASD-predominant and DD-predominant 
genes were enriched in interneurons and excitatory neurons com-
pared with glial and progenitor cells (Fig. 6b, Supplementary Fig. 10  
and Supplementary Tables 15, 18 and 19). ASD-predominant 
enrichment seemed somewhat stronger than DD-predominant 
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all classes of genomic variation in gene discovery and the potential 
impact of gene-level CNV analyses in diagnostic testing.

We expect these findings to shed light on the neurobiological 
origins of ASD. However, given the substantial overlap between the 
genes implicated in NDDs writ large and those implicated directly 
in ASD, disentangling the relative impact of individual genes on 
neurodevelopment and phenotypic spectra is a daunting yet impor-
tant challenge. Consider two of the ASD risk genes: ARID1B and 
DSCAM. Both are highly associated with ASD, although statistical 
evidence is stronger for ARID1B. Yet while some individuals with 
mutations in ARID1B also have comorbid ASD, it is only one of a 
wide range of developmental phenotypes58. The profound impact 
of ARID1B on development is apparent by the contrast of de novo 

ASD architecture. Benchmarking against WGS, more than 85% 
of all rare coding CNVs spanning more than two exons could be 
recalled by exome-based CNV discovery. We find that deletion of 
a highly constrained gene confers comparable risk to alteration of 
an established GD segment, and we observe a dramatic enrichment 
of CNVs among ASD probands compared with unaffected siblings 
across the 373 NDD risk genes identified. We also recapitulate the 
observation of a maternal bias in gamete-of-origin for de novo 
CNVs in ASD probands47 but find this enrichment to be restricted 
to NAHR-mediated CNVs (for example, 95% of 16p11.2 CNVs), 
whereas all other mechanisms were predominantly paternal in ori-
gin and consistent with previous WGS analysis in controls42. These 
results collectively emphasize the value of routine joint analysis of 
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mutations in the DD and ASD cohorts: 132 carriers out of 31,058 
DD probands versus 9 carriers out of 15,036 ASD probands, a sev-
enfold higher rate in DD. This raises a challenge for neurobiolo-
gists: neurodevelopmental features associated with perturbation of 
ARID1B could be relevant to DD, yet irrelevant to ASD. Because 
evidence for DSCAM comes solely from the ASD cohort, it could 
be a better choice for neurobiological studies of ASD. Still, as we 
develop here, DSCAM is also involved in risk for schizophrenia, and 
studies such as ours continue to demonstrate the pleiotropic conse-
quences of many such genes implicated in ASD and NDD risk. To 
identify the key neurobiological features of ASD will likely require 
convergence of evidence from many ASD genes and studies. Careful 
selection of candidates among the genes implicated here based on 
their mutational and functional features could inform these future 
studies. We have taken a step in that direction, as genes expressed 
at earlier stages of cortical development, such as progenitor genes, 
broadly show greater DD enrichment, while those expressed later, 
such as maturing neurons, lean towards ASD. This is consistent with 
the expectation that earlier and more generalized impairment leads 
to severe global DD while later, neuron-specific impairment affects 
more isolated developmental domains, such as social interaction and 
the presence of repetitive behaviors and/or interests that typify ASD.

In conclusion, our analyses of rare coding variation illuminate 
the allelic diversity contributing to ASD and both the shared and 
distinct genetic architectures between ASD and related NDDs. 
We further highlight enrichment of associated genes at different 
neuronal timepoints. The consortia studies aggregated here have 
catalyzed a rapid evolution in genetic studies in ASD, including pre-
liminary analyses in recent preprints that have leveraged these data 
for insights into gene discovery in ASD and DD datasets, and into 
the combined impact of rare and common variant polygenic risk 
across males and females8,9,59,60. As sample sizes rapidly expand, the 
analytic framework presented here will continue to yield returns in 
both gene discovery and improved understanding of the differential 
risks to disorders on the neurodevelopmental and neuropsychiatric 
spectrum posed by variants within these genes.
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requiring a genotype quality of at least 25 was applied to every genotype. Hail’s 
transmission_disequilibrium_test() function was then called to count transmitted 
and untransmitted alleles for each variant in family-based data. Subsequently, 
additional dataset-specific filters on variant quality score log-odds values were 
applied to derive final counts of transmitted and nontransmitted alleles. For 
additional details, see Supplementary Note.

CNV processing. For the subset of samples with available raw genomic data 
(Supplementary Table 3), we employed GATK-gCNV for exome CNV detection, 
along with an additional supplement of 7,832 general research use controls. 
GATK-gCNV is a Bayesian method specifically designed to adjust for known 
bias factors in exome capture and sequencing (for example, GC content), while 
automatically controlling for other technical and systematic differences. Briefly, 
raw sequencing files were compressed into read counts over the set of annotated 
exons and used as input, and a principal component analysis-based approach 
was implemented on observed read counts to distinguish differences in capture 
kits (Supplementary Fig. 1), followed by a hybrid density- and distance-based 
clustering approach to curate batches of samples for parallel processing. After 
batching determination, GATK-gCNV was run for each batch and filtering  
metrics produced by the underlying Bayesian model were used to balance  
between sensitivity and PPV. For details, see Supplementary Note. Of note,  
we observed five instances among probands of possibly complex de novo SVs 
on chromosome 15, exhibiting adjacent GD duplications of differing copy states 
(Supplementary Table 9).

CNV benchmarking. We had access to 8,439 samples for which matching genome 
and exome sequencing data were available for benchmarking comparisons. The 
ground truth data were CNVs called from WGS using the ensemble machine 
learning method GATK-SV25,26. After removing samples that did not pass 
GATK-gCNV exome QC filters (Supplementary Note, n = 971 samples) and 
removing samples that had an outlier number of rare (site frequency <1%) calls in 
the GATK-SV genome callset (>16 rare calls, based on median + 2 × interquartile 
range, n = 477 samples), 7,035 samples remained for direct comparison. 
Benchmarking was carried out for all rare CNVs (site frequency <1%). Sensitivity 
was measured by the proportion of sites called from WGS data that had a match 
in the GATK-gCNV callset. Specifically, for each site, if at least 50% of the samples 
that had that CNV in the WGS data also had a GATK-gCNV call with a consistent 
direction (deletion or duplication) that overlapped at least 50% of the captured 
intervals, this was considered a success. For CNVs called by GATK-gCNV, PPV 
was measured by requiring that 50% of the GATK-gCNV samples with that call 
had a match in the WGS calls (ground truth) with at least 50% interval overlap. 
We evaluated sensitivity and PPV as a function of the number of captured exons 
overlapping the canonical transcripts of protein-coding genes.

TADA Bayesian framework for gene association. TADA is a Bayesian framework 
that produces gene-level measures of evidence for association that can be 
transformed into a FDR42. Broadly speaking, for a given variant type and gene, 
TADA produces a BF to measure statistical evidence, taking as input the count of 
variant events, the mutation rate, the number of samples and a prior on the risk of 
a variant in each gene. BF can be readily combined across different variant types 
for the same gene by multiplication, arriving at a total measure of association for 
a given gene. This total BF can then be transformed directly into a FDR and the 
appropriate statistical threshold can be applied to extract a candidate gene list. 
In the previous TADA study4, evidence was aggregated for de novo PTVs, MisB 
variants and MisA variants, as well as case/control PTVs to find 102 genes meeting 
an FDR ≤ 0.1 threshold.

For this analysis, we extended TADA to leverage updated measures of 
constraint (LOEUF) and the full combination of de novo, case/control and 
inherited × PTV, MisB, MisA, deletion and duplication variants, as well as variants 
in unaffected siblings. For full details, see Supplementary Note.

Applying TADA to DD data. We accessed the summary tables released by the 
DDD in Kaplanis et al.5, detailing de novo variants detected and gene-level variant 
counts in 31,058 trios where the offspring was diagnosed with a developmental 
disorder. To calculate the number of PTVs per gene, we aggregated the Kaplanis 
et al. variants annotated with consequences of ‘frameshift_variant,’ ‘splice_donor_
variant,’ ‘splice_acceptor_variant’ or ‘stop_gained.’ For synonymous counts,  
we aggregated variants with labels of ‘synonymous_variant’ or ‘stop_retained_
variant.’ We annotated missense variants (‘missense_variant’) with MPC scores 
and, using those MPC scores, we assigned MisB and MisA status and aggregated 
counts per gene.

To create TADA-DD, we supplied the per-gene counts of PTVs, MisA variants 
and MisB variants to TADA in the same manner as we supplied our ASD cohort 
counts. TADA-DD BFs were then combined with those from the ASD cohort on 
a per-gene basis, allowing us to estimate FDR on a combined NDD super-cohort 
(TADA-NDD).

Comparison of TADA-DD and denovoWEST data from Kaplanis. Kaplanis et al.5 
report association values for 19,654 genes, of which 285 are significant at an 

Methods
We confirm that this research complies with all relevant ethical regulations and was 
approved by the Mass General Brigham Human Research Committee (MGBHRC) 
Institutional Review Board (IRB): Study Protocol 2012P001018, The Study of Novel 
Autism Genes and Other Neurodevelopmental Disorders (12 March 2021) and 
Study Protocol 2013P000323, Genomic Studies of Human Neurodevelopment (7 
September 2018).

Protocols undergo annual continuing review by the MGBHRC IRB (Mass 
General Brigham, 399 Revolution Drive, Suite 710, Somerville, MA 02145, USA). 
All necessary patient/participant consent has been obtained and the appropriate 
institutional forms have been archived. No participant compensation was provided 
from this study.

SNV/indel processing. ASD samples were aggregated from four independent 
sources: (1) previously published data from the Autism Sequencing Consortium 
(ASC; total n = 26,268 (refs. 4,61)); (2) previously published data from the Simons 
Foundation Autism Research Initiative (SFARI) Simons Simplex Collection 
(SSC; total n = 9,170 (refs. 61,62)); (3) unpublished data from the ASC (n = 5,036) 
and (4) the recently released Simons Foundation Powering Autism Research 
for Knowledge (SPARK initiative; n = 22,766 (ref. 63)). The distribution of these 
samples is provided in Supplementary Table 1 (one family is in both SPARK and 
unpublished ASC data, with different probands; one mother in the unpublished 
ASC data is also a proband in a different trio in the same dataset).

From these sources, family-based samples were processed and genotyped 
jointly in four batches. The first two batches included the published and 
unpublished ASC and SSC cohorts: (1) ‘ASC B14’ included ASC samples through 
consortium sequencing batch 14 plus the SSC (n = 24,099; 4,632 new; 14,415 males 
and 9,684 females); (2) ‘ASC B15-16’ included ASC batches 15 and 16 (n = 832, 
all new, 500 males and 332 females). The following two batches included two 
independent releases of the SPARK cohort: (3) the ‘SPARK Pilot’ initial release 
(n = 1,379; 833 males and 546 females) and (4) the SPARK.27k.201909 (‘SPARK 
main freeze’) release (n = 21,387; 12,679 males and 8,708 males).

Raw sequencing outputs were aligned where needed to the GRCh38 reference 
genome and variants were jointly called following GATK64 best practices. Briefly, 
individual gVCFs were generated by GATK HaplotypeCaller in gVCF mode and 
subsequently jointly genotyped for high confidence alleles using GenotypeGVCFs, 
accompanied by variant quality score recalibration to produce output VCFs. For 
additional details containing the specifics for each of the four batches, please see 
Supplementary Note. Finally, raw data were not available for 1,354 children and 
family members reported in Satterstrom et al.4, and these variants were lifted over 
directly to GRCh38 (Supplementary Table 1).

SNV/indel filtering. Creation of working datasets. Hail v.0.2 (https://hail.is) was 
used to process VCFs and write working datasets. Reported relationships and 
sample uniqueness were verified, sex was imputed and variant consequences were 
annotated. Genotypes were filtered based on (1) depth, (2) genotype quality, (3) 
phred-scaled likelihood of the call being homozygous reference (PL[HomRef]), (4) 
allele balance, (5) number of informative reads and (6) Hardy–Weinberg P value. 
For additional details, see Supplementary Note.

De novo variant calling and quality control. For curation of de novo variants, 
we used Hail’s de_novo() function to identify candidate variants, taking into 
account population variant frequencies. Candidates were further filtered based 
on: (1) frequency in gnomAD population and within their respective dataset, (2) 
‘ExcessHet’ filter, (3) allele balance and parent/child depth ratio, (4) variant quality 
score log-odds values and (5) excess number of de novo candidate variants within 
the same sample. For additional details, see Supplementary Note.

Case-control variants. ASC case-control samples consisted of Danish iPSYCH 
samples and Swedish PAGES samples. Rare variant counts for 4,863 autism and 
5,002 control samples from the iPSYCH cohort were taken from the data of 
Satterstrom et al.65, where rare variants were defined as those with an allele count 
no greater than five in the combination of the iPSYCH data with non-Finnish 
Europeans from the nonpsychiatric subset of gnomAD (a total of 58,121 people). 
In addition to samples labeled as ‘Autism,’ samples labeled as ‘Both’ in that study 
(meaning that an individual had both autism and ADHD diagnoses) were used 
as autism cases for our purposes. Rare variant counts for 728 autism and 3,595 
control samples from the PAGES cohort were taken from Satterstrom et al.4, 
where rare variants were defined as those with an allele count no greater than five 
in the 18,153 combined parents, cases, and controls in the dataset, as well as an 
allele count no greater than five in the nonpsychiatric subset of ExAC r0.3 (45,376 
people). Counts were removed for 17 cases for whom parental sequences became 
available, so that they are now included in our family-based data instead.

Transmitted variants. Counts of transmitted and nontransmitted alleles were 
produced starting from each of the four working datasets described above. First, 
variants were dropped that had been marked ‘ExcessHet’ in the Filters field by 
GATK or had allele frequencies greater than 0.1% in either their own dataset or 
the nonneuro subset of gnomAD GRCh38 exomes v.2.1.1. In addition, a filter 
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Cds
i =

(

dn.asdobsi − dn.asdexpi

)

√

dn.asdexpi

where:

dn.asdexpi = dn.asdobsi × (dn.asdobsi + dn.dddobsi )/N

with the average over the 100 downsampling repetitions recorded as the C statistic 
for each gene.

Mixture modeling. If gene mutation rates were independent of cohort, then 
the C statistic would be distributed as a standard normal statistic, but this was 
clearly not true (Fig. 5e). Genes with unusually few mutations in the ASD cohort 
produced a negative C statistic and those with unusually many mutations in 
the ASD cohort produced a positive statistic. Assuming the genes split into two 
classes, one favoring DD mutations and the other favoring ASD mutations, we 
fitted a two-component normal mixture model. This calculation was performed 
using the normalmixEM function in the ‘mixtools’ R package70. We restricted 
the model to have a common s.d. for both components (option arbvar = F), 
which was estimated to be 0.527. Although the C statistics varied continuously 
across the spectrum of values observed, we could estimate the posterior 
probability a gene was from the DD or ASD component to determine likely group 
membership. Genes with posterior probability greater than 0.99 for either class 
were labeled by that class.

Tree analysis. To understand the developmental cell types in which these genes 
were expressed, we analyzed two datasets using a new approach called cFIT, the 
common factor integration and transfer learning algorithm55. cFIT relies on a 
linear model assuming a common factor matrix shared among datasets, as well as 
gene-wise location and scale shifts unique to each dataset. It estimates the shared 
and batch-specific parameters through iterative nonnegative matrix factorization 
and then recovers the batch-free expression for each dataset based on the common 
factor and factor loadings. We applied cFIT to fetal cells from two studies53,57 
and used unsupervised clustering (MRtree)56 to the integrated data to generate a 
hierarchical tree of various cell types. For details, see Supplementary Note.

Enrichment analysis. We performed enrichment analysis for each cluster in 
the resulting tree to determine if any clusters expressed an unusual number 
of ASD-predominant or DD-predominant risk genes. Before performing the 
enrichment analysis, that is, creating a 2 × 2 table for expressed gene (yes/no) by 
risk gene (yes/no), we needed to first identify the set of genes to be included in the 
analysis, which is defined as the set of genes ‘expressed’ in at least one cell type. 
Because the integration process often replaces zero values in the gene expression 
matrix with small positive values, we considered any integrated expression value 
less than 0.5 to be nonexpressed. A gene was considered ‘expressed’ for a particular 
cell type if its expression was greater than 0.5 for at least 25% of the cells in the 
terminal clusters. For each cluster, we then determined if the expressed genes 
belonged to the ASD-predominant or DD-predominant gene sets and computed 
the OR from the 2 × 2 table to determine enrichment (Fig. 5c).

Evaluating overlap with schizophrenia-associated genes. We compared our 
ASD- and DD-associated genes to the schizophrenia-associated genes reported by 
SCHEMA7 to determine if there was any overlap between ASD and schizophrenia 
at the level of individual risk genes and, if so, whether it was related to ASD-DD 
overlap. Note that 3 out of 309 genes with FDR ≤ 0.001 in TADA-DD were not 
included in the SCHEMA results, while 10 out of 244 genes identified by SCHEMA 
as schizophrenia-associated at P < 0.01 were not evaluated by our TADA model 
(8/10 were on chromosome X).

As described in the main text, among the 72 ASD genes we discovered at 
an FDR ≤ 0.001, 61 show an association with DD (using FDR ≤ 0.001, based on 
TADA-DD), and 8 show an association with schizophrenia at P < 0.01. If the 
two associations were independent, we would expect roughly one of the eight 
ASD-schizophrenia genes to lack an association with DD (based on all but 11/72 
= ~15% of the ASD genes overlapping DD). However, we in fact find that four of 
the ASD-schizophrenia genes lack an association with DD, which is a significant 
overrepresentation compared with random chance (P = 0.023, binomial test; 
Supplementary Fig. 11a).

We also analyzed ASD-schizophrenia overlap using the 36 ASD-predominant 
genes and 82 DD-predominant genes shown at the extremities of the distribution 
in Fig. 5f (which shows posterior probability for ASD enrichment of the genes in 
our heterogeneity analysis). We looked for overlap between these gene sets and 
the 244 genes identified by SCHEMA as schizophrenia-associated at P < 0.01. We 
found that 6 of the 36 ASD-predominant genes were schizophrenia-associated, 
while 3 of the 82 DD-predominant genes were schizophrenia-associated 
(Supplementary Fig. 11b). If we compare with the null hypothesis that each of 
the 17,294 genes from our TADA model that are also in the SCHEMA results has 
an equal chance of being schizophrenia-associated, then the ASD-schizophrenia 
overlap is significantly enriched (P = 8.4 × 10−6, binomial test), while the 

exome-wide threshold. Of the 18,128 autosomal genes investigated by our study, 
17,919 (99%) have a match from Kaplanis et al., including all 252 significant 
autosomal genes. Of the Kaplanis et al. denovoWEST exome-wide significant 
genes, 237/252 (94%) are also found in the TADA-DD FDR ≤ 0.001 list.

We also measured the concordance of the Bayesian TADA-DD FDR with the 
most frequent denovoWEST estimates of gene significance reported in Kaplanis 
et al.5 by transforming the Kaplanis P values (denovoWEST_p_full) into FDRs 
(FDR denovoWEST) using the R function p.adjust(method = ‘fdr’). A pairwise 
plot of TADA-DD FDR with transformed Kaplanis FDR reveals high concordance 
(Supplementary Fig. 6; cor = 0.95) on the log scale, signaling convergence in 
evaluation of gene-level evidence between our studies, and allowing us to integrate 
the Kaplanis variant data into our Bayesian framework.

Female protective effect versus ascertainment bias of affected females. Severity 
of phenotype and sex are known to be associated with the presence of de novo 
SNV/indel or CNV mutations in individuals with ASD. Specifically, those with 
more severe phenotypes or females are more likely to be carriers of such mutations. 
Notably, various studies have also found that females are less likely to be diagnosed 
with ASD compared with males with similar presentation50,66,67, creating the 
possibility that the excess burden of damaging de novo variants observed in 
females could be due to this ascertainment bias—females are simply more severely 
affected. An alternative is that severity and sex combine approximately additively 
to determine burden. This would be consistent with an alternative hypothesis—a 
female protective effect—that posits that females require a greater burden of 
genetic risk variation to be affected. Using ADOS and IQ as proxies for severity 
where available, we constructed logistic regression models of carrier status as 
the outcome and sex, severity and their interactions as predictors. We found no 
evidence to support ascertainment bias and instead favor the additive alternative 
(Supplementary Table 13). For more details, see Supplementary Note.

Evaluating oligogenicity in ASD and DD. We tabulated the number of individuals 
with zero, one and two de novo damaging variants (PTV or MisB) among the 
TADA-ASD 72, TADA-ASD 185, and TADA-NDD 373 genes and constructed a 
Poisson expectation on the number of expected individuals with two such variants 
as follows:

p = (number of variants/number of samples)2

Expectation = (p × number of samples) × exp (−p) /2!

These analyses also offer a glimpse into the evidence supporting an oligogenic 
model of ASD and DD. Using the list of 373 NDD-associated genes, we observed 
913 (6.1%) of the 15,036 ASD probands harboring a damaging de novo variant 
of interest (PTV or MisB), and 12 probands that carried two (0.08%). Across all 
31,058 DD probands, one de novo variant was found in 5,176 (16.7%) cases, and 96 
(0.31%) carried two. Using a Poisson expectation model for the number of affected 
individuals carrying two variants, we find depletion in both the ASD and DD 
cases carrying two variants (ASD: 27.4 expected, 12 observed; DD: 390 expected, 
96 observed). This same depletion was observed when restricting to the 72 or 185 
genes associated with ASD alone, indicating no support for oligogenicity among 
ASD or DD cases from these analyses (Supplementary Tables 14a–c).

Conditional analysis of cross-cohort association. For the ASD and DD cohorts, 
separately, we first converted the set of 18,128 gene q-values into P values using 
the following R command: pval = qval × rank(qval) / (max(qval) × length(qval)). 
Next, we selected genes meeting FDR ≤ 0.05 from the TADA-ASD and TADA-DD 
cohorts, treating the derived lists separately. For the set of 185 identified 
TADA-ASD genes, we evaluated the distribution of their back-transformed P 
values from TADA-DD using the ‘propTrueNull’ function from the R package 
limma_3.38.3 (refs. 68,69) to estimate pi0 and pi1 = 1 – pi0, which is the estimated 
fraction of the number of genes associated in the DD cohort. pi0 is the estimated 
fraction of genes that have no association and for which their P values would be 
distributed uniformly on the interval 0 – 1. We then did the converse: choosing the 
set of 477 identified TADA-DD genes, we evaluated the distribution of their  
P values from TADA-ASD to estimate pi1.

ASD-DDD heterogeneity analysis. We asked which of the 464 signal genes 
was more tightly connected with either ASD or DD than expected by chance. 
To do so, we formulated an approach that builds on the familiar chi-statistic 
residual. Before computing the residuals, we needed to overcome the far larger 
number of mutations present in the DD sample because the standardized residual 
performs best when the total count of events, per cohort, is equal. We therefore 
down-sampled the DD mutations in signal genes to obtain a count of 1,001 
mutations, matching the count of mutations in the ASD cohort. This was repeated 
100 times.

C statistic. For the C statistic, we used a standard log-linear model analysis by 
conditioning on the row (gene) and column totals (over ASD or DDD). We asked if 
the residual for ASD was substantially different from that expected under the null. 
The residual for gene i was defined as:
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DD-schizophrenia overlap is not (P = 0.10, binomial test). The two outcomes  
(6/36 versus 3/82) are also different when compared with each other (P = 0.023, 
Fisher’s exact test).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used in this study are available at: Repository/DataBank Accession: 
NHGRI AnVIL; accession ID: phs000298; Databank URL: https://anvilproject. 
org/data; Repository/DataBank Accession: Simons Foundation for Autism 
Research Initiative SFARIbase; accession ID: SPARK/Regeneron/SPARK_WES_2/; 
Databank URL: https://www.sfari.org/resource/spark/; de novo variant data used 
analyses reported in Supplementary Table 9 (CNVs) and Supplementary  
Table 20 (SNV/indels). Other candidate de novo CNVs that were either too  
small (spanning two exons or less) or did not meet quality score threshold  
(quality score < 200) to be included in our statistical analyses are reported in 
Supplementary Table 21. Aggregated rare variant counts (inherited, case/control)  
are released in Supplementary Tables 5–7. To access all individual variants, please 
see above repositories. GRCh38 reference genome: gs://gcp-public-data–broad- 
references/hg38/v0/Homo_sapiens_assembly38.fasta; Access to UK Biobank data 
will be provided by the UK Biobank.

Code availability
The R code used to generate TADA association results is available under the MIT 
license at https://github.com/talkowski-lab/TADA_2022; https://doi.org/10.5281/ 
zenodo.6496480; analyses executed in R 3.5.3: limma_3.38.3, stringr_1.4.0, 
GenomicRanges_1.34.0, GenomeInfoDb_1.18.1, IRanges_2.16.0, S4Vectors_0.20.1 
and BiocGenerics_0.28.0.
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